Comment on 'sum rules for quantum billiards'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 193923
(http://iopscience.iop.org/0305-4470/19/18/038)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:58

Please note that terms and conditions apply.

COMMENT

Comment on 'Sum rules for quantum billiards'

Robert M Ziff
Department of Chemical Engineering, The University of Michigan, Ann Arbor, Michigan 48109, USA

Received 24 March 1986

Abstract

For a d-dimensional rectangular box, the function $\zeta(T ; s)$ considered by Itzykson et al is related to Epstein's zeta function and can be written in a form which exhibits the analytic structure explicitly.

Recently, Itzykson et al (1986) have considered the behaviour of the function

$$
\begin{equation*}
\zeta(T ; s) \equiv \sum_{s=1}^{\infty} E_{p}^{-s} \tag{1}
\end{equation*}
$$

about $s=1$, where E_{p} are the eigenvalues of the Laplacian operator on the bounded domain T with Dirichlet boundary conditions (which ensures $E_{0}>0$). In this comment I show that, for a d-dimensional rectangular box, an explicit expression for $\zeta(T ; s)$ can be written which shows its analytic behaviour, and that, for a square, the behaviour of $\zeta(T ; s)$ can be found from previously known results. Furthermore, explicit solutions for many other rectangles and triangles with rational side ratios are suggested by the extensive work of Glasser and Zucker (1980 and references therein).

For a d-dimensional box of sizes $L_{1}, L_{2}, \ldots, L_{d}, E$ are given by

$$
\begin{equation*}
E\left(n_{1}, \ldots, n_{d}\right)=\pi^{2}\left(n_{1}^{2} / L_{1}^{2}+\ldots+n_{d}^{2} / L_{d}^{2}\right) \tag{2}
\end{equation*}
$$

with $n_{i}=0,1,2, \ldots$ We make use of Epstein's zeta function (see Glasser and Zucker 1980) written in the form (Ziff et al 1977)

$$
\begin{equation*}
C_{s}\left(\omega_{1}, \ldots, \omega_{d}\right) \equiv \Gamma(s) \pi^{-s} \sum_{n_{1}}^{\prime}\left(N^{2}\right)^{-s} \quad(s>d / 2) \tag{3}
\end{equation*}
$$

where $N^{2} \equiv n_{1}^{2} / \omega_{1}^{2}+\ldots+n_{d}^{2} / \omega_{d}^{2}, \omega_{1} \omega_{2} \ldots \omega_{d}=1$, and the sum is over all n_{1} except the single term $n_{1}=0, n_{2}=0 \ldots$ (which is denoted by the prime). C_{5} satisfies
$C_{s}\left(\omega_{1}, \omega_{2}, \ldots, \omega_{d}\right)=1 /(s-d / 2)-1 / s+\sum_{n_{1}}^{\prime} E_{1-s}\left(\pi N^{2}\right)+\sum_{n}^{\prime} E_{s+1-d / 2}\left(\pi \tilde{N}^{2}\right)$
where $\tilde{N}^{2} \equiv n_{1}^{2} \omega_{1}^{2}+\ldots+n_{d}^{2} \omega_{d}^{2}$ and $E_{n}(s) \equiv \int_{1}^{x} t^{-n} \mathrm{e}^{-\phi} \mathrm{d} t$. Equation (4) provides the analytic continuation for C_{s} for all s, implies the identity $C_{s}\left(\omega_{1}, \ldots, \omega_{d}\right)=$ $C_{d / 2-s}\left(1 / \omega_{1}, \ldots, 1 / \omega_{d}\right)$ and shows that C_{s} has only two poles, at $z=0$ and $z=d / 2$. For $d=1, C_{s}(1)=2 \pi^{-s} \Gamma(s) \zeta(2 s)$. Thus in two dimensions

$$
\begin{align*}
\Gamma(s) \zeta\left(L_{1}, L_{2} ; s\right) & =\Gamma(s) \sum_{n_{1}, n_{2}>0}\left[\pi^{2}\left(n_{1}^{2} / L_{1}^{2}+\ldots+n_{d}^{2} / L_{d}^{2}\right)\right]^{-s} \\
& =\frac{1}{4} \pi^{-s}\left[\left(L_{1} L_{2}\right)^{s} C_{s}\left(\omega_{1}, \omega_{2}\right)+\left[L_{1}^{2 s}+L_{2}^{2 s}\right] C_{s}(1)\right] . \tag{5}
\end{align*}
$$

According to (4), the first term in (5) has a pole at $s=1$ with residue $L_{1} L_{2} / 4 \pi=$ area $/ 4 \pi$ and the second term has a pole at $s=\frac{1}{2}$ residue $-\left(L_{2}+L_{2}\right) / 4 \pi=-$ perimeter $/ 8 \pi$ (and both have poles at $s=0$, but this is due to the pole of $\Gamma(s)$). The generalisation to d dimensions is obvious and $\Gamma(s) \zeta\left(\left[L_{1}, \ldots, L_{d} ; s\right)\right.$ has poles at $s=d / 2, d / 2-1, \ldots$, representing the volume, surface area, etc.

Itzykson et al are interested in the behaviour about $s=1$. For $s=1+\varepsilon$, (4) and (5) give $\zeta\left(L_{1}, L_{2} ; s\right)=\left(L_{1} L_{2} / 4 \pi\right)(1 / \varepsilon+g+\mathrm{O}(\varepsilon))$ with

$$
\begin{align*}
g=\ln \left(L_{1} L_{2} / 4 \pi\right) & +\gamma+1+\sum_{n_{1}, n_{2}}^{\prime} \exp \left(-\pi N^{2}\right) /\left(\pi N^{2}\right) \\
& +\sum_{n_{1}, n_{2}}^{\prime} E_{1}\left(\pi \tilde{N}^{2}\right)-(\pi / 3)\left(L_{1} / L_{2}+L_{2} / L_{1}\right) \tag{6}
\end{align*}
$$

where we have used $C_{1}(1)=2 \pi^{-1} \zeta(2)=\pi / 3$. This is the general form of g for a rectangular domain.

For a perfect square, one can use the identity

$$
\begin{equation*}
\sum_{n_{1}, n_{2}}^{\prime}\left(n_{1}^{2}+n_{2}^{2}\right)^{-s}=4 \zeta(s) \beta(s) \tag{7}
\end{equation*}
$$

(where $\beta(s)=\Sigma(-1)^{n}(2 n+1)^{-s}$) to find $C_{s}(1,1)=4 \Gamma(s) \pi^{-s} \zeta(s) \beta(s)$ and therefore $\zeta\left(L^{2} ; s\right)=(L / \pi)^{-s}[\zeta(s) \beta(s)-\zeta(2 s)]$. Then using the identity $C_{s}(1,1)=C_{1-s}(1,1)$ and the known behaviour of $\zeta(s)$ and $\beta(s)$ about $s=0$ (Erdelyi 1955, Abramowitz and Stegun 1965, Glasser 1973, Campbell and Ziff 1979),

$$
\begin{align*}
& \zeta(s)=-\frac{1}{2}-(s / 2) \ln (2 \pi)+\mathrm{O}\left(s^{2}\right) \\
& \left.\beta(s)=\frac{1}{2}+s \ln \left[\Gamma^{2}\left(\frac{1}{4}\right) 2^{-1 / 2} \pi^{-1}\right)\right]+\mathrm{O}\left(s^{2}\right) \tag{8}\\
& \Gamma(s)=1 / s-\gamma+\mathrm{O}(s)
\end{align*}
$$

one can show

$$
\begin{equation*}
g=\left[\frac{1}{4} \ln \left(2^{1 / 2} L / \Gamma^{2}\left(\frac{1}{4}\right)\right)+2 \gamma-2 \pi / 3\right] . \tag{9}
\end{equation*}
$$

We note that (9) is closely related to the energy of a two-dimensional square array of vortices in a rotating vessel (Campbell and Ziff 1979), and equivalently to the groundstate energy of a two-dimensional one-component plasma (which is a system of negatively charged parallel lines, in a uniform background of positive charge).

While the identity (7) seems to have been first found by Lorentz in 1871 (see Glasser and Zucker 1980), it has since been rediscovered by many people. The related identity they found for an equilateral triangle is also known. Glasser and Zucker (1980) have shown that a large number of rectangular and triangular systems of rational dimensions have energy levels whose sums can be written in a form like (7). Thus the degeneracy functions that Itzykson and Luck (1986) are investigating should be explicitly soluble fo a large number of geometries.

References

Abramowitz M and Stegun I 1965 Handbook of Mathematical Functions (Washington, DC: NBS) Campbell L J and Ziff R M 1979 Phys. Rev. B 201886
Erdelyi A 1955 Higher Transcendental Functions vol 1 (New York: McGraw-Hill)
Glasser M L 1973 J. Math. Phys. 14 409, 701
Glasser M L and Zucker I J 1980 Theoretical Chemistry: Advances and Perspectives vol 5 (New York: Academic) pp 67-139
Itzykson C and Luck J M 1986 J. Phys. A: Math. Gen. 19211
Itzykson C, Moussa P and Luck J M 1986 J. Phys. A: Math. Gen. 19 L111
Ziff R M, Uhlenbeck G E and Kac M 1977 Phys. Rep. 32C 169

